Green Motors

Did you Know that:

An induction motor is the preferred choice of motor for many thanks to their rugged construction and the ability to control their speed.

Induction vs. Synchronous AC Motors

The basic difference between an induction motor and a synchronous AC motor is that in the latter a current is supplied into the rotor (usually DC) which in turn creates a (circular uniform) magnetic field around the rotor. The rotating magnetic field of the stator will impose an electromagnetic torque on the still magnetic field of the rotor causing it to move (about a shaft) and rotation of the rotor is produced. It is called synchronous because at steady state the speed of the rotor is the same as the speed of the rotating magnetic field in the stator.

By way of contrast, the induction motor does not have any direct supply onto the rotor; instead, a secondary current is induced in the rotor. To achieve this, stator windings are arranged around the rotor so that when energised with a polyphase supply they create a rotating magnetic field pattern which sweeps past the rotor. This changing magnetic field pattern induces current in the rotor conductors. These currents interact with the rotating magnetic field created by the stator and in effect causes a rotational motion on the rotor.

However, for these currents to be induced, the speed of the physical rotor must be less than the speed of the rotating magnetic field in the stator or else the magnetic field will not be moving relative to the rotor conductors and no currents will be induced. If by some chance this happens, the rotor typically slows slightly until a current is re-induced and then the rotor continues as before. This difference between the speed of the rotor and speed of the rotating magnetic field in the stator is called slip. It is unitless and is the ratio between the relative speed of the magnetic field as seen by the rotor (the slip speed) to the speed of the rotating stator field. Due to this, an induction motor is sometimes referred to as an asynchronous machine.


Single Phase Induction Motors

In a single phase induction motor, it is necessary to provide a starting circuit to start rotation of the rotor. If this is not done, rotation may be commenced by manually giving a slight turn to the rotor. The single phase induction motor may rotate in either direction and it is only the starting circuit which determines rotational direction.

For small motors of a few watts, the start rotation is done by means of one or two single turn(s) of heavy copper wire around one corner of the pole. The current induced in the single turn is out of phase with the supply current and so causes an out-of-phase component in the magnetic field, which imparts to the field sufficient rotational character to start the motor. Starting torque is very low and efficiency is also reduced. Such shaded-pole motors are typically used in low-power applications with low or zero starting torque requirements, such as desk fans and record players.

Larger motors are provided with a second stator winding which is fed with an out-of-phase current to create a rotating magnetic field. The out-of-phase current may be derived by feeding the winding through a capacitor or it may derive from the winding having different values of inductance and resistance from the main winding.

In some designs, the second winding is disconnected once the motor is up to speed, usually either by means of a switch operated by centrifugal force acting on weights on the motor shaft or by a positive temperature coefficient thermistor which, after a few seconds of operation, heats up and increases its resistance to a high value thereby reducing the current through the second winding to an insignificant level. Other designs keep the second winding continuously energised during running, which improves torque.

Copyright © 2010 Greener Gateway Ltd